Residential Smoke Alarm Project: Sublethal Effects of Irritant and Asphyxiant Gases on Egress Time

Treye Andrew Thomas, M.S., Ph.D.
Division of Health Sciences
U.S. Consumer Product Safety Commission
May 7, 2002

Co-Authors: S White, S Inkster, M Neily, A Lee, L Saltzman

The opinions are those expressed by the author, and do not necessarily represent the views of the Commission.

Background Irritants, Asphyxiants and Egress

- ISO 13571
 - Reduce irritant gas production from burning building materials
- Recent events (9/11)
 - Escape from hazardous situations
 - Residual effects of smoke exposure
- Concentrations below tenability limits

Irritant and Asphyxiant Gas Effects on Egress: Approach

- Create basic escape scenario
- CPSC Human Factors (HF) staff
 - Estimate escape time
 - Quantify physiological effects
- CPSC Health Sciences (HS) staff
 - Non-fire related exposures (CO)
 - Magnitude of physiologic effects
- Estimate change in egress time

Irritant and Asphyxiant Gases

- Asphyxiant Gases
 - Hypoxia
 - Central nervous system depression
 - Cardio-vascular effects
- Effects of irritant gases
 - Important at early stages of fire before massive buildup of asphyxiant and/or HCN
 - Egress maybe sufficiently delayed to allow onset of serious asphyxiant effects

Carbon Monoxide

- CO binds to hemoglobin in blood to produce COHb
 - Interferes with O2 uptake and delivery resulting in oxygen deprivation
 - Blood COHb (%COHb) serves as a useful approximation of CO poisoning severity
 - Generally progressively worsening symptoms with increasing COHb

Carbon Monoxide

- CO poisoning regarded as a continuum of effects
- Serious disorientation and possible loss of consciousness on reaching 30-40% COHb
 - May occur with prolonged elevations of 20-30%
 - Negatively impacts egress time of healthy individuals
- Dependent on time course profile of CO

Carbon Monoxide

- CPSC Non-fire related exposures from combustion products generally lower than peak levels reached in fire scenarios
- CPSC Non-fire related CO exposures
 - Combustion products
 - Lower than fires (100's vs 1000's ppm)
- Coburn Foster Kane (CFK) equation

Irritant Gases

- Irritants quantified by FTIR
 - HCl, HBr, HF, and NOx
- Health Effects
 - Eye irritation
 - Eye closing, compromised vision, disorientation
 - Upper Respiratory and Lung Irritation
 - Coughing shortness of breath, body contortions, slowed movement
- Effects of each gas are cumulative

Irritant Gases

- Low concentrations can produce mild effects that may impair an individual's speed of movement through a home
- Moderate concentrations may further decrease escape speed.
 - Some researchers consider irritants to not significantly impair escape and provide a strong stimulus to escape
- High concentrations
 - Severe physiological effects
 - Significant effects on egress speed likely
 - Increased egress time

- Difficulty in quantifying specific escape time
 - Egress time changes with each scenario
 - Dearth of data on irritant effects on egress in home fire scenarios
- Egress coefficient concept of CPSC staff
 - Weighting factor for physiological effects
 - Applied to escape time in drill scenarios

- Calculated based on the concentrations of irritant gases
 - Integrate delay time for various physiological effects
 - Coughing severity, eye irritation, respiratory irritation
 - Multiply clean escape time by the egress coefficient

- Utilize existing exposure limits for irritant gases
 - IDLH, AEGL, EEGL, TLV-TWA, etc.
 - Ambient concentrations in
 - Environment
 - Workplace
 - Emergency situations
 - Low level chronic exposures in homes (e.g., CO from furnaces)
 - Fire scenarios
 - Post-exposure health effects
- Compare gas concentrations in fire to exposure limits

- Integrate exposure limits with health impacts model
 - Quantify effect severity for coughing, eye irritation, respiratory irritation (e.g., mild, moderate, and severe)
 - Estimate magnitude of physical effects of gas concentrations (e.g., mild, moderate, and severe)
 - Magnitude of effects translated into egress coefficient in model

Example

- Basic Case
 - The "drill escape time" is estimated for the best case scenario
 - Lone, healthy young adult with predetermined escape route
 - No attempts to retrieve valuables or other items.
 - No impact from any other physical, chemical, or psychological factors
- Concentration of irritant gases quantified or estimated
 - Gas concentrations used in model to predict severity of physiologic response
 - Response estimations used in model to calculate egress coefficient

Example

- Estimated "basic case" drill escape time is 2 minutes
 - CPSC Human Factors estimates
- Egress coefficient is 1.5
 - Xppm cumulative irritant gas concentration
 - Mild to moderate health effects
- Calculation:
 - 2 minute drill escape time x 1.5 egress coefficient =
 3 minute escape time for a given concentration of irritant gas

Conclusions

- CPSC HS and HF to review irritant and asphyxiant gas data for potential effects
- Dearth of available data on irritant effects
- Model for delay includes egress coefficient
- Will compare escape scenarios and potential for incapacitation from effects of combustion gases